GWC Score
gwc.Rd
Calculate the gwc score between two vectors, using either a weighted spearman or pearson correlation
Usage
gwc(
x1,
p1,
x2,
p2,
method.cor = c("pearson", "spearman"),
nperm = 10000,
truncate.p = 1e-16,
...
)
Arguments
- x1
numeric
vector of effect sizes (e.g., fold change or t statitsics) for the first experiment- p1
numeric
vector of p-values for each corresponding effect size for the first experiment- x2
numeric
effect size (e.g., fold change or t statitsics) for the second experiment- p2
numeric
vector of p-values for each corresponding effect size for the second experiment- method.cor
character
string identifying if apearson
orspearman
correlation should be used- nperm
numeric
how many permutations should be done to determine- truncate.p
numeric
Truncation value for extremely low p-values- ...
Other passed down to internal functions
Examples
data(clevelandSmall_cSet)
x <- molecularProfiles(clevelandSmall_cSet,'rna')[,1]
y <- molecularProfiles(clevelandSmall_cSet,'rna')[,2]
x_p <- rep(0.05, times=length(x))
y_p <- rep(0.05, times=length(y))
names(x_p) <- names(x)
names(y_p) <- names(y)
gwc(x,x_p,y,y_p, nperm=100)
#> rho p
#> 0.87717962 0.01980198